
Lab 3
Regression Diagnositics and KNN Regression

Dr. Irene Vrbik

2023-09-25

Summary This lab will cover how to make predictions, analyze diagnostic plots, and identify
potential problems in multiple linear regression. For more details, consults your textbook
(ILSR2 Section 3.3.3. and Lab 3.6). You will also look at KNN regression, a non-parametric
method for performing regression.

Learning outcomes

By the end of this lab students will be able to:

•

Prediction

To begin, lets start by fitting a linear regression model to the Auto dataset available in the
ISLR2 package. fit1 attempts to explain gas mileage (in mpg mpg) using the predictor
variable of the engines horsepower horsepower.

library(ISLR2)
attach(Auto)
head(Auto)

1

mpg cylinders displacement horsepower weight acceleration year origin
1 18 8 307 130 3504 12.0 70 1
2 15 8 350 165 3693 11.5 70 1
3 18 8 318 150 3436 11.0 70 1
4 16 8 304 150 3433 12.0 70 1
5 17 8 302 140 3449 10.5 70 1
6 15 8 429 198 4341 10.0 70 1

name
1 chevrolet chevelle malibu
2 buick skylark 320
3 plymouth satellite
4 amc rebel sst
5 ford torino
6 ford galaxie 500

fit1 <- lm(mpg~horsepower)
summary(fit1)

Call:
lm(formula = mpg ~ horsepower)

Residuals:
Min 1Q Median 3Q Max

-13.5710 -3.2592 -0.3435 2.7630 16.9240

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 39.935861 0.717499 55.66 <2e-16 ***
horsepower -0.157845 0.006446 -24.49 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.906 on 390 degrees of freedom
Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16

Judging by the very low p-values for 𝛽1 (slope), it appears that there a relationship between
the predictor and the response. Since the sign for slope is negative (̂𝛽1 =-0.1578) we expect
this relationship to be negative, that is, as the horsepower of our engine increase, gas mileage
tends to go down. This relationship would also appear to be relatively strong as indicated by

2

the high 𝑅2 value = 0.6049 (ie approximately 60% of the variance in the response is being
explained by the simple model. To find the predicted mpg associated with a horsepower of
say 90, we could use the predict function (see ?predict.lm for the help file; note that the
newdata argument must be a data frame data structure):

predict(fit1, data.frame("horsepower"=90))

1
25.72984

We could have constructed this prediction “by hand”, by obtaining the line of best fit and
substituting in 90 for x but this obviously takes a little bit more work:

coef(fit1)

(Intercept) horsepower
39.9358610 -0.1578447

x <- 90
coef(fit1)["(Intercept)"] + coef(fit1)["horsepower"]*x

(Intercept)
25.72984

It is also handy to note that we could see all the fitted ̂𝑦𝑖 values using the following command:

fitted(fit1)
(output suppressed to save space)

To see the corresponding residuals, use:

resid(fit1)
(output suppressed to save space)

Confidence and Prediction Intervals

To get a prediction interval we use:

3

predict(fit1, data.frame("horsepower"=90), interval="predict")

fit lwr upr
1 25.72984 16.07076 35.38891

To get a confidence interval we use:

predict(fit1, data.frame("horsepower"=90), interval="confidence")

fit lwr upr
1 25.72984 25.20932 26.25035

N.B. when using predict your data need to be in a data frame and the predictors need to
be named in the same way as your training data.

To create a band similar to the one we saw in lecture, you will need to create a sequence of
plausible x values. For our purpose I will just take the observed range of hosepower values
within our data set. While you can do these plots in base R, the code is greatly facilitated
using the ggplot function from the ggplot2 library:

Load necessary libraries
library(ggplot2)

Create a new data frame for prediction intervals
new_data <- data.frame("horsepower" = seq(min(Auto$horsepower), max(Auto$horsepower), length.out = 100))

Calculate the prediction intervals and confidence intervals
predict_intervals <- predict(fit1, newdata = new_data, interval = "prediction", level = 0.95)
confidence_intervals <- predict(fit1, newdata = new_data, interval = "confidence", level = 0.95)

Combine the intervals with the new data
intervals_data <- cbind(new_data, predict_intervals, confidence_intervals)
rename column names to avoid duplication
colnames(intervals_data)[c(2:7)] <- c("p_fit","p_low", "p_upr",

"c_fit", "c_lwr", "p_upr")

Create a plot using ggplot2
ggplot(intervals_data, aes(x = x, y = p_fit)) +
geom_line(color = "blue") + # Fitted values
geom_ribbon(aes(ymin = p_lwr, ymax = upr), fill = "lightblue", alpha = 0.5) + # Prediction interval

4

geom_ribbon(aes(ymin = lwr.ci, ymax = upr.ci), fill = "gray", alpha = 0.5) + # Confidence interval
labs(

title = "Linear Regression Prediction and Confidence Intervals",
x = "X-axis",
y = "Y-axis"

)

Diagnostics

While the conclusions we made above may seem appropriate based on the R output, we would
be amiss to not check the assumptions of this model before we jump to any conclusions. Recall
that the assumptions for a linear regression model are that:

1. There exists an (at least approximate) linear relationship between Y and X. %(aka, not
some other relationship)

2. The distribution of 𝜖𝑖 has constant variance.
3. 𝜖𝑖 is normally distributed.
4. 𝜖𝑖 are independent of one another. For example, 𝜖2 is not affected by 𝜖1.

To check the first assumption, we may like to look at the scatterplot with the line of best
fit. As demonstrated below, it would appear that the response and predictor variable have a
curved relationship rather than a linear one.

plot(mpg~horsepower, data=Auto)
abline(fit1, col="red")

50 100 150 200

10
20

30
40

horsepower

m
pg

5

We could also explore the diagnostic plots produced when call plot() on the output of an
lm() object. To see them all in one plot, let’s change the panel layout of our plot window to
store 4 figures (in this case in a 2 by 2 matrix) (for more details see ?par). In other words we
could call:

par(mfrow=c(2,2))
plot(fit1)

5 10 15 20 25 30

−
15

Fitted values

R
es

id
ua

ls Residuals vs Fitted
321328331

−3 −1 0 1 2 3

−
3

Theoretical QuantilesS
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals
321328331

5 10 15 20 25 30

0.
0

Fitted valuesS
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
321328331

0.000 0.010 0.020 0.030

−
2

LeverageS
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

Residuals vs Leverage
116914

A strong U-shaped pattern can be seen in the residual plot (located in top left corner) of the
diagnostic plots below. This U-shape—and in general, any strong pattern—in the residuals
indicates non-linearity in the data.

Transformations

We can extend the linear model to accomodate non-linearity by transforming predictor vari-
ables. For this particular example, the relationship between mpg and horsepower appears to
be curved. Consequently, a modle which includes a quadratic horsepower term, may provide
a better fit.

Note that ∼ in R indicates a formula obect; for more details see ?formula. In formula
mode, ^ is used to specify interactions (eg. ^2 denotes all second order interactions from the
preceeding term). So in order to use the caret to denote the arithmetic squared function, we

6

need to insulate the term using the I() function. Alternatively, we could call/define a new
variable, say hp2, that stores the squared values of hoursepower squared.

To fit this linear model—and YES this a linear model (i.e. a multiple linear regression model
with 𝑋1 = horsepower and 𝑋2 = horsepower2 as predictors 1—we have a choice between the
following two set-ups:

option 1
hp2 <- Auto$horsepower^2
auto2 <- cbind(Auto, hp2)
fit2a <- lm(mpg~horsepower+hp2)
summary(fit2a)

Call:
lm(formula = mpg ~ horsepower + hp2)

Residuals:
Min 1Q Median 3Q Max

-14.7135 -2.5943 -0.0859 2.2868 15.8961

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 56.9000997 1.8004268 31.60 <2e-16 ***
horsepower -0.4661896 0.0311246 -14.98 <2e-16 ***
hp2 0.0012305 0.0001221 10.08 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.374 on 389 degrees of freedom
Multiple R-squared: 0.6876, Adjusted R-squared: 0.686
F-statistic: 428 on 2 and 389 DF, p-value: < 2.2e-16

option 2
fit2 <- lm(mpg~horsepower+I(horsepower^2))
summary(fit2)

Call:

1recall that we will include all higher and lower order terms because of the hierarchy principal

7

lm(formula = mpg ~ horsepower + I(horsepower^2))

Residuals:
Min 1Q Median 3Q Max

-14.7135 -2.5943 -0.0859 2.2868 15.8961

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 56.9000997 1.8004268 31.60 <2e-16 ***
horsepower -0.4661896 0.0311246 -14.98 <2e-16 ***
I(horsepower^2) 0.0012305 0.0001221 10.08 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.374 on 389 degrees of freedom
Multiple R-squared: 0.6876, Adjusted R-squared: 0.686
F-statistic: 428 on 2 and 389 DF, p-value: < 2.2e-16

Lets compare the two fits on the scatterplot. It appears the fit with the squared horsepower
is fitting the data much better:

newdata <- data.frame(horsepower=seq(min(Auto$horsepower),
max(Auto$horsepower), length.out = 1000))

newdata$pred1 <- predict(fit2, newdata)
plot(mpg ~ horsepower, data = Auto)
abline(fit1, col="red", lwd=2)
lines(newdata$horsepower, newdata$pred1, col = "green", lwd=3)
legend('topright', lwd = 2,lty=1, col=c("red","green"),

legend=c("SLR (fit1)","MLR (fit2)"))

8

50 100 150 200

10
20

30
40

horsepower

m
pg

SLR (fit1)
MLR (fit2)

We could now fit higher order terms (eg. horsepower3, horsepower4, …), however, we run
the risk of overfitting. For instance, fit3 found below appears to be too wiggly. (This relates
back to our bias and variance tradeoff).

fit3 <- lm(mpg~horsepower+I(horsepower^2)+I(horsepower^3)+I(horsepower^4)+I(horsepower^5))
newdata <- data.frame(horsepower=seq(min(Auto$horsepower),

max(Auto$horsepower), length.out = 1000))
newdata$pred1 <- predict(fit2, newdata)
newdata$pred2 <- predict(fit3, newdata)
plot(mpg ~ horsepower, data = Auto)
abline(fit1, col="red", lwd=2)
lines(newdata$horsepower, newdata$pred1, col = "green", lwd=2)
lines(newdata$horsepower, newdata$pred2, col = "blue", lwd=2)
legend('topright', lwd = 3,lty=1, col=c("red","green", "blue"),

legend=c("SLR (fit1)","MLR (fit2)", "MLR (fit3)"))

9

50 100 150 200

10
20

30
40

horsepower

m
pg

SLR (fit1)
MLR (fit2)
MLR (fit3)

Sticking with fit2, we can now replot our diagnostic plots to investigate assumptions. The
first assumption of linearity can be checked in the residual plots. Note that the 3d plotting of
this data in R is not as straight forward as their 2d counterparts. But we visualize the linear
assumption in MLR with 2 predictors as having points lying approximately on a 2D plane
in our 3D space (having x, y, and z variables equal to horsepower, mpg and horsepower2,
respectively).

par(mfrow=c(2,2))
plot(fit2)

15 20 25 30 35

−
15

Fitted values

R
es

id
ua

ls Residuals vs Fitted
331 321

153

−3 −1 0 1 2 3

−
2

Theoretical QuantilesS
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals
331321

153

15 20 25 30 35

0.
0

Fitted valuesS
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
331 321153

0.00 0.04 0.08

−
4

LeverageS
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance
0.5

0.5
Residuals vs Leverage

2010259

10

While there is no more curvature in our residual plots, we are prehaps seeing some evidence
of heteroscedasticity In other words, assumption 2 may be violated. In addition, our QQ-
plot suggests that the residuals are not normally distributed (we are seeing high amounts of
deviation at the extremities).

Outliers and high leverage points

As seen in the Scale-Location graph, it appears there may also been some outliers in our data.
Using the ISLR recommendation, we can check the observations whose studentized residuals
and observe which ones are greater than 3.

which(rstudent(fit2)>3)

321 328 331
321 328 331

It appears from the Residuals vs Leverage graph that a number of points could be high leverage
points. To investigate the top, say 5, observations having the highest cooks distance, we could
do the following:

order(cooks.distance(fit2), decreasing = TRUE)[1:5]

[1] 20 102 59 331 321

Collinearity

Now lets consider a MLR model using more predictors from the Auto data from above. We
discussed in lecture how some of these predictor variables might be correlated with one another.
To investigate this, lets have a look at a scatterplot matrix which includes all of the variables
in the data set using the pairs() function.

pairs(Auto)

11

mpg

3
50

10
1.

0

10 40

3 6

cylinders

displacement

100

50 200

horsepower

weight

1500

10 25

acceleration

year

70 78

1.0 2.5

origin

10
10

0
15

00
70

0 200

0

name

We can see that horespower and displacement for example are highly correlated. We might
also decide to look at the matrix of correlations between the variables using the function
cor().

remove "name" (since it is not numeric)
cor(Auto[,names(Auto)!="name"])

mpg cylinders displacement horsepower weight
mpg 1.0000000 -0.7776175 -0.8051269 -0.7784268 -0.8322442
cylinders -0.7776175 1.0000000 0.9508233 0.8429834 0.8975273
displacement -0.8051269 0.9508233 1.0000000 0.8972570 0.9329944
horsepower -0.7784268 0.8429834 0.8972570 1.0000000 0.8645377
weight -0.8322442 0.8975273 0.9329944 0.8645377 1.0000000
acceleration 0.4233285 -0.5046834 -0.5438005 -0.6891955 -0.4168392
year 0.5805410 -0.3456474 -0.3698552 -0.4163615 -0.3091199
origin 0.5652088 -0.5689316 -0.6145351 -0.4551715 -0.5850054

acceleration year origin
mpg 0.4233285 0.5805410 0.5652088
cylinders -0.5046834 -0.3456474 -0.5689316
displacement -0.5438005 -0.3698552 -0.6145351
horsepower -0.6891955 -0.4163615 -0.4551715
weight -0.4168392 -0.3091199 -0.5850054
acceleration 1.0000000 0.2903161 0.2127458
year 0.2903161 1.0000000 0.1815277
origin 0.2127458 0.1815277 1.0000000

12

Notice that the correlation between horespower and displacement is very high (0.8972570)
as is the correlation between cylinders and displacement is very high (0.9508233).

KNN Regression

Below is the example from our KNN Regression example. There was some discussion in class
about the best way we might choose 𝐾. In practice the most common way to do this is to use
cross-validation. While this will be covered later on in the course, for now, one solution we
might use is to simply plot the predicted values for each value of 𝐾 and choose the model which
is not too jagged or too bias. While this solution may be unsatisfactory to some, any other
method we could dream up we simply be set aside once we learn about cross-validation.

Non-linearity example
set.seed(3531)
x <- runif(30,-2,2)
y <- 15+2.3*x-1.5*x^2+rnorm(30)
plot(y~x)
linmod <- lm(y~x)
abline(linmod, col="blue", lwd=3)

x2 <- x^2
quadmod <- lm(y~x+x2)

Manually plot curve using coefficients
curve(15.35+2.27*x-1.67*x^2, add=TRUE, col="red", lwd=3)

−1 0 1 2

8
10

12
14

16

x

y

13

library(FNN)
seqx <- seq(from=-2, to=2, by=0.001)
plot(y~x, main="KNN Regression")
knnr <- knn.reg(x, y=y, test=cbind(seqx), k=20)
lines(seqx, knnr$pred, col="green", lwd=2)
knnr <- knn.reg(x, y=y, test=cbind(seqx), k=5)
lines(seqx, knnr$pred, col="purple", lwd=2, lty=2)
knnr <- knn.reg(x, y=y, test=cbind(seqx), k=1)
lines(seqx, knnr$pred, col="brown", lwd=2, lty=3)
legend("bottomright", legend = c("k=20", "k=5", "k=1"), lwd=2, lty=1:3, col=c("green", "purple", "brown"))

−1 0 1 2

8
10

12
14

16

KNN Regression

x

y

k=20
k=5
k=1

14

	Learning outcomes
	Prediction
	Confidence and Prediction Intervals
	Diagnostics
	Transformations
	Outliers and high leverage points
	Collinearity
	KNN Regression

